Cyclone engine

I’ve covered gas-turbine engines before, and they still live on in my mind as one of the best alternatives to ICE’s. Not as a direct substitute, mind you, but as a compliment to EVs as range extending technology. It’s a rather elegant solution, since it allows for regular, fossil-fuel consuming folk to adjust more easily due to the fact that they still have to pump in fuel, while at the same time it’s a cleaner, more eco-friendly electric vehicle. Everyone’s happy.

Perhaps their greatest advantage is that they can run on nearly anything that burns. Petrol, diesel, kerosene, whiskey, perfume, basically anything that’s liquid and combustible. And that includes all sorts of lovely biofuels that hopefully will be produced just as cleanly as they burn. However, this application of gas turbines to automotive propulsion is only being pursued by a consortium (that includes Jaguar), apparently.

It even crossed my mind to do something I’ve dreamt about for years: to get myself an old car, rip out the engine and turn it into an alternatively propelled vehicle (just as these guys turned a classic Toyota 2000GT into a solar-powered EV). In this case, a gas turbine electric hybrid. And I thought to myself, how hard can it be?! You just remove the ICE and strap in a gas turbine, batteries and some electric motors behind each wheel hub. But I’m absolutely certain that in reality things would be much more complicated than it sounds. The most elementary components that have a clear place in a conventionally-powered vehicle could become a nightmare. How many gears would it have, if it even had gears at all? What would power the brake servo, the air-con, or the rest of the HVAC system? Would it be the turbine or the batteries? How would someone who wasn’t a very clever engineer even begin to rig the readouts as to how much juice you have left on the batteries, what shuts down or comes to life when the turbine kicks in, etc., etc.? That’s complicated s**t.

I’m still curious as to how gas turbines compare with regular engines. I can’t seem to find any sort of specifications as to what mileage you could get from a gas turbine electric hybrid car or what’s their emission-per-km figure. After all, it’s a very nice technology in principle, but not really worth it if takes a gallon of fuel to keep the car fully operational for a mile. The Jaguar C-X75 concept has “an estimated fuel economy of 41.1 mpg, 778 horsepower, 0 to 62mph in 3.4 seconds, and a top speed of 205 mph”, which is very nice for a concept car, but that doesn’t mean it can to it in the real world. While trying to find some proper numbers, I stumbled across yet another type of engine I wasn’t aware of, called the Cyclone Engine. Its working principle is (if I’m not very much mistaken) a modern take on the steam engine, and has many real world applications, not just powering cars. And like the gas turbine idea (and unlike the split cycle engine and, from what I can tell, the shockwave motion generator), it can burn virtually anything in order to function. The website boasts a lot of advantages over conventional internal combustion engines, just like the split cycle and shockwave engines, from efficiency to number of components, which makes me wonder why these sorts of things aren’t being pursued more aggressively by more mainstream car manufacturers. If any one of these technologies (or hopefully, all of them) take hold, they’ll be tripping over themselves to play catch-up.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: